Counting unrooted loopless planar maps

نویسندگان

  • Valery A. Liskovets
  • Timothy R. S. Walsh
چکیده

We present a formula for the number of n-edge unrooted loopless planar maps considered up to orientation-preserving isomorphism. The only sum contained in this formula is over the divisors of n. Résumé. Nous présentons une formule pour le nombre de cartes planaires sans boucles avec n arêtes, à isomorphisme près préservant l’orientation. La seule somme contenue dans cette formule est prise parmi les diviseurs de n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerative Formulae for Unrooted Planar Maps: a Pattern

We present uniformly available simple enumerative formulae for unrooted planar n-edge maps (counted up to orientation-preserving isomorphism) of numerous classes including arbitrary, loopless, non-separable, eulerian maps and plane trees. All the formulae conform to a certain pattern with respect to the terms of the sum over t | n, t < n. Namely, these terms, which correspond to non-trivial aut...

متن کامل

New bijective links on planar maps via orientations

This article presents new bijections on planar maps. At first a bijection is established between bipolar orientations on planar maps and specific “transversal structures” on triangulations of the 4-gon with no separating 3-cycle, which are called irreducible triangulations. This bijection specializes to a bijection between rooted non-separable maps and rooted irreducible triangulations. This yi...

متن کامل

Counting Unrooted Maps Using Tree Decomposition

This talk presents a new method to count unrooted maps on the sphere. This method is based on tree decomposition More precisely it gives enumerations of 2-connected and 3connected unrooted maps with a complexity of O(N log(N)) for maps with e ≤ N edges and O(N) for maps with i vertices and j faces i + j ≤ N . The family of 3-connected unrooted maps corresponds to the skeletons of polytopes in t...

متن کامل

Enumeration of unrooted orientable maps of arbitrary genus by number of edges and vertices

A genus-g map is a 2-cell embedding of a connected graph on a closed, orientable surface of genus g without boundary, that is, a sphere with g handles. Two maps are equivalent if they are related by a homeomorphism between their embedding surfaces that takes the vertices, edges and faces of one map into the vertices, edges and faces, respectively, of the other map, and preserves the orientation...

متن کامل

Bijective Counting of Maps by Girth and Degrees I: Restricted Boundary Conditions

For each positive integer d, we present a bijection between the set of planar maps of girth d inside a d-gon and a set of decorated plane trees. The bijection has the property that each face of degree k in the map corresponds to a vertex of degree k in the tree, so that maps of girth d can be counted according to the degree distribution of their faces. More precisely, we obtain for each integer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005